### Reinforcement Learning

This tutorial provides code, exercises and solutions for popular Reinforcement Learning algorithms. These are meant to serve as a learning tool to complement the theoretical materials from “Reinforcement Learning: An Introduction (2nd Edition)” and “David Silver’s Reinforcement Learning Course”.

**Course Format:** Online

**Language:** English

**Eligibility:** Public

Author:

Denny Britz

Source Repository:

https://github.com/dennybritz/reinforcement-learning

Description:

### Overview

This repository provides code, exercises and solutions for popular Reinforcement Learning algorithms. These are meant to serve as a learning tool to complement the theoretical materials from

Each folder in corresponds to one or more chapters of the above textbook and/or course. In addition to exercises and solution, each folder also contains a list of learning goals, a brief concept summary, and links to the relevant readings.

All code is written in Python 3 and uses RL environments from OpenAI Gym. Advanced techniques use Tensorflow for neural network implementations.

### Table of Contents

- Introduction to RL problems & OpenAI Gym
- MDPs and Bellman Equations
- Dynamic Programming: Model-Based RL, Policy Iteration and Value Iteration
- Monte Carlo Model-Free Prediction & Control
- Temporal Difference Model-Free Prediction & Control
- Function Approximation
- Deep Q Learning (WIP)
- Policy Gradient Methods (WIP)
- Learning and Planning (WIP)
- Exploration and Exploitation (WIP)

### List of Implemented Algorithms

- Dynamic Programming Policy Evaluation
- Dynamic Programming Policy Iteration
- Dynamic Programming Value Iteration
- Monte Carlo Prediction
- Monte Carlo Control with Epsilon-Greedy Policies
- Monte Carlo Off-Policy Control with Importance Sampling
- SARSA (On Policy TD Learning)
- Q-Learning (Off Policy TD Learning)
- Q-Learning with Linear Function Approximation
- Deep Q-Learning for Atari Games
- Double Deep-Q Learning for Atari Games
- Deep Q-Learning with Prioritized Experience Replay (WIP)
- Policy Gradient: REINFORCE with Baseline
- Policy Gradient: Actor Critic with Baseline
- Policy Gradient: Actor Critic with Baseline for Continuous Action Spaces
- Deterministic Policy Gradients for Continuous Action Spaces (WIP)
- Deep Deterministic Policy Gradients (DDPG) (WIP)
- Asynchronous Advantage Actor Critic (A3C)

### Resources

Textbooks:

Classes:

- David Silver’s Reinforcement Learning Course (UCL, 2015)
- CS294 – Deep Reinforcement Learning (Berkeley, Fall 2015)
- CS 8803 – Reinforcement Learning (Georgia Tech)

Talks/Tutorials:

- Introduction to Reinforcement Learning (Joelle Pineau @ Deep Learning Summer School 2016)
- Deep Reinforcement Learning (Pieter Abbeel @ Deep Learning Summer School 2016)
- Deep Reinforcement Learning ICML 2016 Tutorial (David Silver)
- Tutorial: Introduction to Reinforcement Learning with Function Approximation
- John Schulman – Deep Reinforcement Learning (4 Lectures)
- Deep Reinforcement Learning Slides @ NIPS 2016

Other Projects:

Selected Papers:

- Human-Level Control through Deep Reinforcement Learning (2015-02)
- Deep Reinforcement Learning with Double Q-learning (2015-09)
- Continuous control with deep reinforcement learning (2015-09)
- Prioritized Experience Replay (2015-11)
- Dueling Network Architectures for Deep Reinforcement Learning (2015-11)
- Asynchronous Methods for Deep Reinforcement Learning (2016-02)
- Deep Reinforcement Learning from Self-Play in Imperfect-Information Games (2016-03)
- Mastering the game of Go with deep neural networks and tree search